MA-Table

Operator's Manual (Version 2.xx) © http://www.microanalyst.net

MA-Table is a Windows[®] program to display and handle atomic data, which are important for Energy Dispersive X-ray Spectrometry (EDX or EDS), like

- Energy positions of line series (the element X-ray line energies),
- Quick possible element and line searches for selectable energy,
- Quick line overlap search to identify element coincidence problems,
- Relative height relations between lines of a series,
- Critical excitation energies (shell energies),
- Mass attenuation coefficients (mass absorption coefficients).

MA-Table is able to calculate Electron Probe Microanalysis (EPMA) excitation processes and the influence of these processes to the relative heights of the lines. Complete spectra simulation is possible because of the built-in P/B fundamental parameter model for characteristic radiation and Bremsstrahlung. Furthermore the program simulates stochastic processes of X-ray emission and also all artefacts of the EDX spectrometer which contribute finally to the usually measured spectra. A very realistic spectra simulation is finally performed.

Additionally MA-Table is able to calculate Minimum Detection Limits (MDL) and the analysis depths, taking into account excitation conditions, specimen geometry and special matrix and overlap situations with other elements. It is possible to simulate a real EDX-data acquisition process for nearly realistic demonstration purposes. This simulated data acquisition depends from count rate of the X-ray spectrometer (setup value) and of acquisition time. Alternatively the simulation is possible to switch to stable electron beam-current with changing count-rated depending from acquisition conditions. Watching the reduction of MDLs with progress of acquisition time during simulation of ongoing acquisition process is an impressive feature.

All functions have access to the central data base.

Content:

- 1. Functions of Icon Bar
- 2. Functions of MA-Table Line Display
- 3. Functions of Spectra Display
- 4. Functions of Spectra Display Setup
- 5. Specimen / spectra Composer
- 6. Spectra comparison
- 7. References
- 8. Finally some Hints
- 9. Version 2.xx start

1. Functions of Icon Bar

6	MA-Tab	le (Micr	oAna	alyst Lin	e Energy	Table)									
¥	?	ð 占	%	6	www.	microa	nalyst.ne	t 💊	32	Ge	*	9	M	• •	· •
+				Switch	between	n table a	and Icon-	Bar							
###			••••	Display	v periodi	ic table	of elemen	nts							
?				Elemer	it search	with li	ne energy	[,] inpu	t						
B			••••	Edit da	ta base (only in	licensed	versic	on)						
4			••••	Print, s	tore and	copy o	f data (<i>on</i>	ly in l	licen	ised	ver	rsic	m)		
5				Setup,	registrat	ion, der	no, manu	al and	l upc	late	s				
<u>k</u>				Call sp	ectra sin	nulatior	1		1						
9				Display	all ED	X line e	energies a	nd dat	ta fo	r ele	eme	ents	s of	chc	oice
M	4 1	M	••••	Move t	he focus	sed ele	ment insi	de tab	le						

This icon gives the possibility to switch very fast between complete table and the small icon bar. If MA-Table is reduced to an icon bar, the program needs very little space from the desktop and is any time available. But even in icon bar shape, the access to all functions is available without any disadvantage.

The standard MA-Table view is with complete table chart:

🔏 MA-Table (MicroAnalyst Line Energy Table)														
4		II ?	s 🖻 🖇	L .	🦕 v	www.r	nikro	analy	/tik.d	e 📘	32 G	e 🗽 🔮) IA -	сын
	Ζ		name	Ka1	Ka2	KB1	KB2	KL KM	Ec(K)	La1	LB1	LB2	Lg1	LI 🔼
	20	Ca	Calcium	3.692	3.688	4.013		52	4.038	0.341	0.345			0.302
	21	Sc	Scandium	4.091	4.086	4.46		54	4,493	0.395	0.3996			0.34
	22	Ti	Titanium	4.511	4.505	4.932		56	4.966	0.452	0.458			0.39
	23	V	Vanadium	4.952	4.945	5.427		59	5.465	0.511	0.519			0.44
	24	Cr	Chromium	5.415	5.405	5.947		61	5.989	0.573	0.583			0.
	25	Mn	Manganese	5.899	5.888	6.49		63	6.539	0.637	0.649			0.55
	26	Fe	Iron	6.404	6.391	7.057		66	7.113	0.705	0.719			0.61
	27	Co	Cobalt	6.93	6.913	7.649		68	7.709	0.776	0.791			0.67
	28	Ni	Nickel	7.478	7.461	8.265		70	8.333	0.851	0.869			0.74
	29	Cu	Copper	8.048	8.028	8.905	8.977	73	8.979	0.923	0.95			0.81 💻
	30	Zn	Zinc	8.639	8.616	9.572	9.658	75	9.659	1.012	1.035			0.88
	31	Ga	Gallium	9.252	9.225	10.263	10.366	77	10.367	1.098	1.125			0.95
Þ	32	Ge	Germanium	9.886	9.885	10.982	11.1	80	11,103	1.188	1.219			1.03
	33	As	Arsenic	10.544	10.508	11.724	11.864	82	11.867	1.282	1.317			1.1
	34	Se	Selenium	11.222	11.184	12.494	12.652	84	12.658	1.379	1.419			1.20
	35	Br	Bromine	11.924	11.878	13.289	13.469	87	13.474	1.48	1.526			1.29
	36	Kr	Krypton	12.649	12.598	14.109	14.315	89	14.326	1.586	1.637			1.38
	37	RЬ	Rubidium	13.395	13.337	14.958	15.185	91	15.2	1.694	1.752			1.48
	38	Sr	Strontium	14.165	14.098	15.832	16.085	92	16.105	1.806	1.872			1.58 🥃
<														> .::

The atomic numbers of elements, which have most overlaps in regard the element lines, are specified in the yellow columns (for fast orientation). The critical excitation energy of the main electron shell is marked with red colour.

Table position focus move

You can select an element with simple mouse clicks into the chart or alternatively may move the element focus with the help of this special table function icon bar.

Then the 🖾 button offers a quick jump to the complete single element line energy data window (see later).

Periodic chart of elements (periodic table)

The operator can use a periodic table of the elements (PSE, Periodic System of Elements) with a simple mouse click to select any element of interest:

The button offers a quick jump to the complete single element line energy display (see later).

The _____ button offers a quick jump to spectra simulation of selected element.

Search for elements and overlaps

There is the possibility to search for elements via input of line energies. MA-Table searches for elements which emit X-ray lines at this energy (assistance to find and identify the elements accurate).

Searching for only alpha- and escape- lines is set to default. With 'alpha' is actually meant the major line, could be Ll or another one, this line which is the dominant. It is possible to search also for all lines in series ('all') or omit the escape lines. By changing the search window energy (standard is +-100 eV), the matched elements will change immediately. This search can be a valuable addition to the existing EDX, if one searches for unidentified peaks in the spectrum. Often the atomic data used even *in new commercial EDX* spectrometers or *old systems* are not sufficient correct or even *wrong (!)*.

62 k	AA-Tab	le (over	lap qı	uery)				9
?			Ove	rlap		L 1	main all	
	3.31 k	eV +-	70		eV	Г	Escap	pe
19	K	Ka1		3.314	keV	+	4	
40	Pd	Lgs Lg1		3.364	keV keV	++	19	
47	Ag	LB2/15		3.348	keV	+	38	
47	Cd	LISO LISI		3.236	keV keV	+	33 7	
48	Cd	LB4		3.367	keV	+	57	
49 49	in In	La1 La2		3.287	keV keV	-	30	
50	Sn	Leta		3.272	keV	-	37	
83 84	Po	ININ3-I MIN4-I	И1) И2)	🧖 МА-	Table (Perod	ic Syst	em
89	Ac	Mg	-	1				
90 92	U	MB		3	4	í.		
93	Np	Ma1/2		Ľi	Ве		-	
94	Pu	IMa1/2	÷	¹¹ Na	¹² Mg			
				¹⁹ K	²⁰ Ca	²¹ Sc	²² Ti	23
				³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	41
				55	56	57	72	73

With PSE icon mouse-click one receives immediately the overview of the found possible elements in periodic system. The individual types of X-ray lines (K, L and M) are possible to distinguish by colours. It is a great assistance for the qualitative analysis (evaluation) of EDX spectra. You have the overview about the identification of elements at selected peak position (energy of the line) with a glance:

🕢 МА-	Table ((Perodi	ic Syst	em of l	lemen	ts)											
¹ H																	² He
³ Li	⁴ Be				3.31 k	eV						⁵ B	⁶ C	⁷ N	⁸ 0	⁹ F	10 Ne
¹¹ Na	¹² Mg			Ove	rlap (+	• 70 eV)	wi	th all I	lines		¹³ AI	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ Cl	¹⁸ Ar
¹⁹ K	²⁰ Ca	21 Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	27 Co	28 Ni	29 Cu	30 Zn	³¹ Ga	³² Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	⁴¹ Nb	42 Mo	43 Tc	⁴⁴ Ru	45 Rh	⁴⁶ Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 <mark> </mark>	⁵⁴ Xe
⁵⁵ Cs	56 Ba	57 La	72 Hf	⁷³ Ta	⁷⁴ W	75 Re	⁷⁶ Os	77 Ir	⁷⁸ Pt	⁷⁹ Au	80 Hg	⁸¹ TI	82 Pb	83 Bi	84 Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	88 Ra	⁸⁹ Ac	104 Ku	105 Bo													9
			,	50	150	lea	let	lea	100		ler	lee	67	lea	lea	-	174
	L-over	rlaps		Ce	Pr	Nd	Pm	⁵² Sm	Eu	Gd	°Tb	Ъy	°́Но	Er	⁵⁹ Tm	Yb	Lu
(c) m	icroana	rraps alvst ne	et	90 Th	⁹¹ Ра	92 <mark>U</mark>	93 <mark>Np</mark>	94 Pu	⁹⁵ Åm	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

With selection of an element from table or via periodic system, the energies of all line-series are displayed in a special

al W11	idow:		🚰 MA-Table (all lines)							
			W	74 Tun g	ysten				* •	
			Ec-K	69.525	Ec-L3 Ec-L2	10.207 11.544	Ec-M5 Ec-M4	1.809 1.872		
	Ec-N7 Ec-N6	0.034	Ka1 Ka2	59.318 57.982	Ec-L1	12.099	Ec-M3 Ec-M2 Ec-M1	2.281 2.575	KC	
	EC-N5 EC-N4 EC-N3	0.246 0.259 0.426	КВ1 КВ2 КВ3	67.244 69.101	La1 La2 LB2/15	8.398 8.335 9.96	Ma1/2	1.774	du.	
	Ec-N2 Ec-N1	0.492 0.595		ke¥	LI LB6	7.388	Mz1 Mz2 MB	1.381		
	N4-N6	0.222			Lg1 Leta	11.286 8.724	Mg M(O4-M3)	2.035		
	N5-N6 N6-05 N6-04	0.208			LB3 LB4 Lg2	9.819 9.525 11.608	M(N1-M3 M(N4-M2 M(N3-M1)] 2.315) 2.397		
	k	e¥				T1.674	ke	√ _	Reset	
	V N		*		Over	laps?		(c) microar	alyst.net	

The major line of each series is highlighted by red colours. N-lines are selectable instead K for all high atomic number elements.

With a mouse-click at a selected line, the program starts a search for all lines of other elements, which may have overlaps with the line of interest. To do this, hit the drop-down menu via single mouse-click. Then simply select the wished line from the drop-down.

Ľ	MA-T	able (all line	es)								
	W	74 Tung	isten				* *				
	Ec-K	69.525	Ec-L3 Ec-L2	10.207 11.544	Ec-M5 Ec-M4	1.809 1.872					
	Ka1	59.318	Ec-L1	12.099	Ec-M3 Ec-M2	2.281 2.575	MC	5	MA-Tab	le (overlap	query)
	Kaz KB1	67.244	La1	8.398	Ec-M1	2.82		W	Ma1	<mark>/2</mark> 0	verlap
	КВ2 КВ3	69.101	L82/15	0.335 9.96 7.200	Ma1/2	1.774			1.774	keV +- 1	00
		ke¥	LB6	9.612	Mz2 Mz2	1.301		14 37	Si Rb	Ka1 La1	1.74
			LB1 Lg1	9.672 11.286	MB Mg	2.035	□ log	38 50	Sr Sn	La1 La1-Esc	1.80
			Leta LB3	_ 8.724 9.819	M(04-M3) Ma1/2			51 73	Sb Ta	La1-Esc Ma1/2	1.85
			LB4 Lg2	9.525 11.608	MB M(N4-M2)			75	Re	Ma1/2	1.84
			Lg3	\$74	Mg M(N3-M1)						
2	•	•) Overla	Ţ T		• mioroar	Reset				
	•		oveni		l	oj microar	ialyst.riet				
	D	isplay of a	all eleme	nts whi	ch have l	ine ove	erlaps				

La1-Esc Ma1/2 1.709 keV Ma1/2 1.841 keV with a selected line.

_ 0 🔽 main

🔲 all

eV

1.740 keV

1.694 keV

1.806 keV

1.692 keV

1.853 keV

🔽 Escape

- 34

- 80

+ 31

- 82

+ 78

- 65

+ 66

The icon has got a double functionality:

- edit of data base
 - calls a Moseley-plot

Edit data base... There is the possibility to edit the data.

Data access 🛛 🔀
Moseley-Plot
Edit data base🜩
Restore: MAData3.dat

The operator has full access to both data-base files (only in licensed version), EdxData1.DBF (first klick) and EdxData2.DBF (second klick). With third klick one comes back to the standard view

6	MA-Table	(MicroA	nalyst Line	Energy Ta	ble) E D	AX int	ernal				×
4	• 📰 ? 🖞		L 🍒	www.m	icroanal	yst.net	🔊 32 G	ie 🗽 🗐		-	H
	ATOMIC_NR	EL_SYMB	AT_MASS	K_ALPHA1	K_ALPHA2	K_BETA1	K_BETA2	K_BETA3	K_		~
	20	Ca	40.08	3.692	3.688	4.013					
	21	Sc	44.96	4.091	4.086	4.46					
	22	Ti	47.88	4.511	4.505	4.932					
	23	V	50.94	4.952	4.945	5.427			12		
	24	Cr	52	5.415	5.405	5.947					
	25	Mn	54.94	5.899	5.888	6.49					
	26	Fe	55.85	6.404	6.391	7.057					
	27	Co	58.93	6.93	6.913	7.649					
I	28	Ni	58.69	7.478	7.461	8.265	99.99 🔨				
	29	Cu	63.55	8.048	8.028	8.905	8.977				
	30	Zn	65.38	8.639	8.616	9.572	9.658				
	31	Ga	69.72	9.252	9.225	10.263	10.366				
	32	Ge	72.59	9.886	9.885	10.982	11.1				
	33	As	74.92	10.544	10.508	11.724	11.864				
	34	Se	78.96	11.222	11.184	12.494	12.652				
	35	Br	79.9	11.924	11.878	13.289	13.469				
	36	Kr	83.8	12.649	12.598	14.109	14.315				
	37	Rb	85.47	13.395	13.337	14.958	15.185				¥
<										>	

(without possibility to edit). Because the composer is using a condensed data base (MAData3.dat), this is important to restor after any change. If not, the operator is asking to do this with next composer use (also with a new installation and with some updates).

Please, be careful. You will change data base immediately and all calculations are possibly changed (e.g. the example edit is nonsens. If you want change, make a backup before!). If the data base is damaged, install once again.

Moseley-Plot...

The Moseley-Plot is a proven tool, which shows very quickly possible irregularities in line energies.

A plot of square roots of line energies or the pure line energies versus atomic numbers is possible as well.

Zoom with left mouse key performing a square of wished area. Reset the zoom using [Reset] button.

Print, store and copy data

An additional window provides you with possibilities to print data, store on disc (ASCIIcode) or to copy into clipboard to use in other programs. To format the printing, the character size is changeable.

🌠 MA-Table (prin	it)															J×
🖪 🐒 😫	B) 13	3														
		_			_				(c)	www.micr	oanalys	t.net				-
																-1
Element	Kal	Ka2	KG1	к62 к	. KM	EcK	Lal	LSI	LB2	Lgl	L1	Lg3	LK LM	EcL3	Mal2	e e
																- 1
3 Li Lithium	0,054			1	37	0,055	1						1		I	
4 Be Beryllium	0,108			1	38	0,112	1						1		1	
5 B BOL	U,183. : 0 233				40	.0,188.	1								1	••
2 W Stickstoff	0,217			12) 44 > 40	0,204	1							0 01	1	
8 0 Samerstoff	0,392			12	2 420	0,401								0,01	1	
9 F Fluor	0.677			12	5 54	0.685								0,009		
10 Ne Neon	0,849.				3.57	.0,87								0,022.		
11 Na Natrium	1,041		1,057	13	61	1,072	1						1	0,031	1	
12 Mg Magnesium	1,254		1,302	13	3 66	1,305	i i						Ì	0,051	l	
13 Al Aluminium	1,487		1,557	13	5 70	1,55	1						I.	0,073	I	
14 Si Silicium	1,74	1,739	1,825	13	7 74	1,839	1						I.	0,099	I	
15 P Phosphor	.2,014.	.2,013.	.2,139.		0.78	.2,145.	1							0,135.	1	
15 3 Schwefel	2,308	2,307	2,454	4	2 82	2,472	0,1487	,			0,148	7	15 39	0,154	I	
17 Cl Chlor	2,522	2,521	2,815	14	£ 85	2,822	0,1826	5			0,182	б	5 40	0,2	I	
18 Ar Argon	2,998	2,955	3,191	4	7 90	3,203	0,221				0,221		5 42	0,249	I	
19 K Kalium	3,314	3,311	3,59	14	7	3,607	0,2503				0,250	3	15 43	0,294	I	
20 Ca Calcium	.3,692.	.3,688.	.4,013.		2	.4,038.	1.0,341.	.0,345			0,302	7	6 45	0,347.		
21 Sc Scandium	4,091	4,085	4,46	15	ł	4,493	0,395	0,399	6		0,348		17 46	0,402	1	
22 Ti Titan	4,511	4,505	4,932	15	5	4,966	0,452	0,458			0,395		17 49	0,455	1	
23 V Vanadium	4,952	4,945	5,427	15	2	5,465	0,511	0,519			0,447		18 51	0,513	1	
24 Cr Chromium	5,415	5,405	5,947	16	L	5,989	0,573	0,583			0,5		18 52	0,574		
20 Min Mangan			.0,49		s	.0,539.	1.0,637.	.0,649						0,04		•••
20 fe Lisen	5,404 5 00	5 010	7,057	10	> >	7,113	1 0,705	0,719			0,010		130 22	0,708	1	
28 Ni Nickal	0,93 7 470	0,913 7 461	1,043	10	,)	8 222	1 0,110	0,191	-		0,010		110 55	0,113	1	
LO MI MICKEI	1, 110	17401	0,200	10	·	0,000	1 0,031	0,003			0,143		110.91	0,000		-
•																•
Table	Print															

Settings/Registration/Demo

🔏 Settings 🛛 🔀
MA-Table Registration Version 2.10 (2015/01/17) Registration
Language Deutsch Englisch
Method
EPMA 🔽 XRF 🗖 Elevation angle °
Detector · · · · · · · · · · · · · · · · · · ·
Window sutw/slew (Moxtek) 💌 Details
Count rate 2000 全 cps Resolution 130 全 eV
Service links
Manual License Forum Service MailTo
(c) microanalyst.net (20032015) Autor: Frank Eggert OK

This window combines the ,About...' functionality with version number and other program information like a 'SetUp'.

Click at **Demo** and you can relax in your chair to watch the full functionality demonstrations of MA-Table.

EPMA is standard selected for spectra simulation. **XRF** is possible to use (*version* 2.00 and higher), but with limited functionalities. The XRF simulation is not complete quantitative, provides only a rough background and do not consider specific excitation and specimen/source geometries. Therefore the XRF simulations are not like real spectra, as the EPMA simulation is. Si(Li) $\leftarrow \rightarrow$ SDD radio buttons change the detector type with setting of some predefined typical parameters values (*version 2.10 and higher*)

Window selects the used window of the Energy Dispersive X-Ray Spectrometer (EDX). You can change thicknesses with **Details** (for fine-tuning of spectra calculation).

3	
Be [um]	0
utw/slew x	1
Au 👻 [nm]	5
Si-dead [um]	0.05
CO2 (um)	0
thick [mm]	3
🔲 with pile-up	calculation
	 ✓
vith pile-up	calculation
recognition time:	0.5

with pile-up calculation

ICC

Be-window thickness [µm]

SUTW-window thickness [factor to standard thickness] Contact layer thickness of the detector [nm] with material selection Si-dead layer (or SiO₂) [µm] Additional CO2 absorption layer on detector surface (inside vacuum of a Si(Li)) detector active thickness [mm]

(All is possible to change only with licensed version.)

Check the pile-up calculation to consider this effect with each simulation, which depends from pulse processor and from count rate. The pileup effect depends on the behaviour and properties of pulse processor and the built-in pile-up rejection. The two parameters are mean pulse-pair recognition time and pulse-pair energy recognition threshold. It may be covered experimentally to be proper adjusted.

Use the [ICC] button to adjust the incomplete charge collection calculation.

Count rate defines the count rate, which you want to use for the spectra simulation. The MA-Table program is going to combine the count rate with acquisition time (for spectra acquisition simulation, calculation of detection limits, ...).

With **Resolution** you can set up your detector resolution (at Mn-Ka). Be careful, the resolution is not dynamically changed with count rate selection (like perhaps in your real working EDX by changing the pulse processor shaping time).

With **Registration** the operator has to input the full license user information (name and license key). In the example one can see a full licensed version (the registration key code is hidden, which is valid for the name only).

If you are ready registered, you will never need this, but for an installation of MA-Table on other computers.

'Registration for personal use:'

Alternatively the free use of MA-Table is possible via Internet based registration (free and anonymus). The program generates a code which is to type into the internet form.

egitimation:	
Full license key: Peter Microscope	
License: 'Group/Enterprise	e
Language C deutsch	Version 1.60
Registration for personal use:	
ok ok	Demo
Get full license	
Enter Exit	MA_table

The code answer is copied into MA-Table registration box. That's it. It is only to get users counted. But the functionality of the free version is limited.

With **Settings** (or right mouse popup) some useful extensions and adaptions are available, especially if one likes to use multi-monitor (**Multi**

monitor) without the usual MA-Table windows docking. Wide screens may better to address with some useful adjustments (Table fonts, docking shift and full size logic).

	Set all windows positions to default Multi monitor (no windows docking)
¥	Adjust / wide screens
	Docking shift: 0
	Table fonts smaller
¥	Full size logic
	Demo
	Update

With checking **Autostart** MA-Table will start with each Windows launch.

With **Service** and several other click possibilities some quick links to the **MICROANALYST.NET** home page are given. Also, you have the opportunity to send a mail to MICROANALYST.NET –service.

www.microanalyst.net

... The most rapid way to the MA-Homepage

Spectra simulation

This icon of icon bar directs the operator directly to spectra simulation (with calculations of realistic spectra, see chapter 3).

Popup function menu for quicker and easier handling of all functions:

Click with right mouse key into the table or the icon bar.

You will find some functions again for quick access. Additionally there are some useful quick access points for internet search and internet links.

Use 'Icon bar adjustment' if the header of your MA-Table is misadjusted (may depend from screen resolution and Windows settings)

	30	Zn	Zinc		8.639	8.616	9.572	9.68
	31	Ga	Gallium		9.252	9.225	10.263	10.36
►	32	Ge	Germani			0.005	10.002	11
	33	As	Arsenic	51	mulation		11.86	
	34	Se	Selenium		oseley-Pi	100	- 1	12.6
	35	Br	Bromine		ement u ettioac	laru		13.46
	36	Kr	Krypton		scungs			14.3
	37	RЬ	Rubidiun	W	'ebSearc	15.18		
	38	Sr	Strontiun	A	dv. X-ray	/ search	2	16.08
	39	Y	Yttrium	M	anual			17.01
	40	Zr	Zirconiur	Fo	orum (Dis	cussion)	17.9
	41	NЬ	Niobium	Se	ervice			18.9
	42	Мо	Molybde					19.96
	43	Тс	Technet	10	on bar a	ajustme		21.00
	44	Ru	Rutheniu	m	19.279	19.15	21.649	22.07

2. Functions of MA-Table Line Display

Line series intensities

All relative line intensities of the selected element are displayed. w are the fluorescence yields and f are Coster-Kronig transition rates, both necessary for calculation the relative line series with taking into account the primary excitation energy (high voltage of electron microscope, primary electron energy). Values for N-lines are not available. All values are stored inside data table EdxData2.DBF.

The program MA-Table considers these values for all simulation calculations. All relative heights will be normalized internally (in sub-shells). M-series are

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	🌠 MA-Table (relativ	e line hig	shts)	
Ka2 0.31 KB1 0.13 KB2 0.02 KB3 0.05 La2 0.082 LB2/15 0.1424 L 0.0376 LB6 0.009 LB1 0.8116 Lg1 0.1511 Leta 0.0218 LB3 0.4183 LB4 0.3341 Lg2 0.082 Lg3 0.1088	w-K 0.9538 Ka1 0.56	w-L3 w-L2 w-L1	0.265 0.3128 0.128	w-M5 0.026 w-M4 w-M3 w-M2
f12 0.19 f23 0.13569 W 74	Ka2 0.31 KB1 0.13 KB2 0.02 KB3 0.05	La1 La2 LB2/15 LI LB1 Lg1 Lg1 Lg1 Lg3 LB4 Lg2 Lg3 f13 f12 f23	0.7222 0.082 0.1424 0.0376 0.009 0.8116 0.1511 0.0218 0.4183 0.3341 0.082 0.1088 0.31 0.19 0.13569	w-M1 Ma1/2 0.568 Mz1 0.039 Mz2 MB 0.345 Mg 0.03 M(04-M3) M(N1-M3) M(N4-M2) 0.015 M(N3-M1) 0.003

assumed simplified to have no excitation dependant internal transitions, therefore normalized all to one.

Mass absorption coefficients

The MAC icon in element selection form is providing mass attenuation coefficients (mass absorption coefficients). Hit the button and the curve of current element will be displayed:

It is possible to select the energy of interest for absorption calculation directly or via selections in the line energy-form before (the same procedure as for element search with line selection). If a thickness is set, the program calculates the transmission of X-rays (selected energy or line) in a layer of the current selected element. It is possible to change the provided density, if required.

'Freeze element' keeps the selected element and you can search for line energies using entire MA-Table functionalities (e.g. scrolling to other elements with choosing selected lines which will be displayed immediately into Masco window with calculated transmission).

Spectra simulations

This is another way to display relative line heights. This calculation is taking into account the current excitation.

The spectra simulation is completely explained in next chapter.

3. Functions of Spectra Display

Starting this window first time, you will always see a line-position and -heights simulation.

To change the element, you should use the functions in 'line series display' window. With opened spectra display window the program recalculates the spectra automatically (considering the selected buttons), if selected element was changed.

E Calculation of line series taking into account detector resolution

Calculation of Bremsstrahlung (or XRF background) distribution

Complete spectra simulation (line series and background)

Spectra display Setup (— > *see next chapter*) Settings / Element overlaps / Spectra acquisition simulation

+

Change of estimated acquisition time in 3 fix steps (depends from count rate setup).

Add current spectrum for spectra comparison (maximum of 10 spectra are possible to add)

Clear the last added spectrum from comparison

Simulation of Au-spectrum with comparison of line positions (line marks) and Bremsstrahlung. —>

Select primary electron energy (high voltage of scanning electron microscope or tube HV with XRF selection).

130

FWHM:

Select tilt angle of specimen.

Select detector resolution.

A popup menu will be faded in with right mouse click into spectra display:

eV (Mn-Ka)

You have the opportunity to choose between:

- logarithmic display or not
- taking into account detector resolution (FWHM) or not
- display of critical excitation energies or not
- ... and finally the possibility for a quick display-reset

The spectra display features are not only provided with the popup menu, but also selectable in single-element line energy form:

Logarithmic display without FWHM consideration

Linear display with display of critical excitation energies (shell energies) with black bars.

<>>< 🛆 🖂 🕭 📗

These quick spectra display icons are available always, starting with MA-Table version 2.00. It is self-explaining (see also the hints moving mouse to icon position).

Take in mind the difference of spectra display scaling up/down \bigtriangleup in comparison to icons \checkmark and \bigstar . These icons affect the real used acquisition time for simulations (only in 3 steps) and are therefore influencing the total counts in spectrum. Both settings are independent. It is possible to use mouse-wheel for spectrum scaling, too.

This icon is providing additionally a usual line-marker, overlaid to all spectra displayed (2 modes, hit repeated):

Example with specimen composer (see chapter 5)

A simple mouse-click on spectrum (channel) or keV-axis is reporting the X-ray energy. With clicking the displayed flag the element/overlap search will start with this energy immediately. With each other energy selection by clicking into the spectrum, the element search will be updated immediately.

4. Functions of Spectra Display Setup

If you like to check line-overlap situations with other elements or if you want to have a rough estimation of detection limits of an element in the matrix of another element, please work with these two check-boxes:

- 1. Click with mouse at 'pick up' check-box to select an element, which you want to check for overlaps with all other elements.
- 2. Then choose another element, and the minimal detection limits will be displayed (M-lines, L-lines, K-lines).
- 3. If you like to compare with and without the overlapped element, take the second check-box.
- 4. You can always change the concentration of selected element

Some additional features:

- Display of simulated main element (red) with the overlaid one (green)
- scrolling through all elements even with spectra full size display

- M, L, K marks the MDL values

- Calculation of detection limits with choice 'fix beam current' or 'fix count rate' (if button is pushed)

6000000 count	s
50 min 0 s	
(with 2000 cps)	-

The example demonstrates 1.0 per cent Au in a Sm-specimen (the main element is Sm), with 1.0 per cent Au inside the specimen (red spectrum) and without Au for comparison (blue line). Both Au-line series (the M at 2.12 keV and the L at 9.7 keV) are significantly detectable. Please compare with calculated detection limits of 0.29 and 0.5 per cent respectively.

The detection limits are only calculated, if 'realistic spectrum' is selected.

The total counts and acquisition time are not selectable free. They depend on selection (three steps only) and pre-defined count rate of EDX system (see 'Settings/Registration/Demo'.

Hit these buttons and you are going to simulate a realistic spectra acquisition with given count rate and acquisition time.

🛅 对 🙋 📇

In the example, the spectrum was frozen after 10, 50, 100 and 200 s and compared to the 3-minutes-spectrum (at 2000 cps). You can watch even the improvement of the detection limits with increasing acquisition time (live at display). Please check also the **Composer** features (next chapter).

Over-voltage and analysis depth calculation

MA-Table is able to calculate the over-voltage $(U_o=E_o/E_c)$ for all lines excited. The calculation of analysis depth (d) takes into account the excitation, absorption, geometry and the mean matrix of binary specimen (the defined second element with concentration of all elements). If the excitation is critical (E_o to small for this line), the program will give the hint with changing to red colour for the lines values:

Ag K- an M-L lines with same primary electron energy but different matrix elements (Au and Cu). The analysis depth of the evaluated lines in the EPMA spectrum is changing (from 0.38 to 0.77 micron for Ag-L). The Ag-M depth is very small. Both effects are influenced strongly from the absorption processes.

The last 4 buttons are sometimes very helpful:

- Quick selection of elements via periodic chart of elements
- Change of spectrum display background colour (only in licensed version)
- Copy the spectrum into clipboard (the current image) (only in licensed version)
- Printing the current spectra simulation (only in licensed version)

5. Specimen / spectra composer

(limited use without licensed version)

A spectra composer is implemented to simulate spectra of specimen for any element fractions (maximum of 30 elements)

It is possible to investigate the influence of excitation, specimen tilt, acquisition time, count rate, resolution and other conditions with their influences to line heights and detection limits for any specimen in Scanning Electron Microscope. The operator has only to input the estimated specimen elements with weight fractions... and the expected spectrum will be calculated. This function is valuable particularly in complex line overlap situations to optimize e.g. the specimen excitation. It is easy to estimate the expected detection limits. The influence of different pulse processor shaping times to separation of different element lines is easy to study with a change of resolution value for simulation.

This is the ways to activate the 'specimen composer':

... or hit one of these elements.

Hit right mouse-button and choose 'Specimen composer' function.

Fe

You can come back into standard operating mode (no composer) using same ways.

Then this form appears:

Fill out the form either with atomic number or element symbols and related weight fractions (concentrations) or atom%. After each edit the [Σ Norm] button must be hit once again (to be sure, that the sum of all contents is 100%).

loa

Ec

With button [Calc] the spectrum calculation is started and the result is displayed immediately.

[Clear] cleans the entire form.

Check 'Atom%' if the inputs are atom% instead weight%.

🚴 Spec	imen Co	mposer 🔣								
1	🕻 elem	ent wt%								
3	Na	9.539								
4	AI	1.096								
5	Si	29.02								
6	Ca	🗸 always	symbols							
7	S	atom% with pile	-up							
8	K	save co	save composed specimen							
9	Sc	load cor	load composed specimen							
10	Ti	delete a	all stored	compositions						
11	V	0.038								
12	Cr	0.019	~							
LM of	elements	<-> At	om%							
🗶 Clea	ar ∑ Nor	m 🖌 Calo	: MDL							

Element symbols and atomic numbers can be entered, even mixed. If 'always symbols' has been chosen, all entered atomic numbers automatically converted into element symbols with normalization. The spelling is not important in regard of capital or no capital letters.

With **[MDL]** a form will be displayed with minimum detection limits (MDL) and analytical

L

0.17

0.25

0.22

0.25

0.13

0.14

1.4

1.0

analysis depth [um]

κ

1.3

1.3

1.3

1.2

1.2

1.1

7

Alternatively the element selection or change is possible via element chart icon click, which will be faded in with each click into 'element' column (or placed at right side, if the number of elements is higher than 10):

You can save and load element sets (composed specimens) with using the pop-up menu. The file-store cabinet buttons are possible to use similar:

Use this button for a convenient way to calculate mass% (usually wrong named weight% or wt%) into atom%

[LM of elements] displays all line marks of the elements in comparison to calculated spectrum, the current specimen excitation and absorption situation is considered. Then it will be possible to view line marks also with/without absorption to compare.

depth for the used conditions:

м

elem.

22 (Ti)

24 (Cr)

25 (Mn)

26 (Fe)

28 (Ni)

29 (Cu)

74 (W)

EPMA

Uo (Eo/Ec)

best MDL

42 (Mo) 0.13

0.02

🔏 Detection limits / analysis depths / excitation

ĸ

0.04

0.05

0.08

0.07

0.09

0.09

_

м

_

0.02

0.8

L

0.18

0.23

0.6

0.14

0.19

0.11

0.03

0.07

MDL [%]

50 min 0 s (with 1802 cps) With version 2.10 it is also possible to change the 'analysis depth' columns into

'analysis depth' columns inte 'lateral resolution':

It can be much different for very soft X-rays.

You can switch the specimen composer on/off also via left-mouse click menu (pop-up menu). This is also the way to change the detector parameters used for calculation (EDX parameters) →

🔽 with ab	sorption	<-> Ator	n% 🗖
🗙 Clear	\sum Norm	🗸 Calo	MDL

FWHM (off/on) Ec (on/off)

log (on/off)

🔆 Reset

Import spectrum

Specimen composer
 EDX parameters

The simulation is possible to perform with or without pile-up effects. For the pile-up simulation machine some parameters are needed to know. The recognition time is the time resolution of the pile-up recognition channel. The energy threshold describes the energy which is starting sensibility for pile-up rejection channel of pulse processor. An ideal pulse processor would have a setting of zero. In praxis the fast channel is worse in energy resolution, therefore the threshold for pulse pair recognition is between 0.5 and 0.8 keV. That is why the pulse processor pile-up rejection is not recognizing X-rays with energies below. The pile-up rejection is blind for low energy X-rays. This causes stocked-up pulses also with higher energy quanta. This is important for high count rates and disturbs the spectrum (e.g. stocked up pulses with elements C or O or low energy L- and M-lines with all other element lines; continuous pile-up fills the valleys between high peaks, even at high energies).

<u>X</u>
Be (um) 0
utw/slew x 1
Au 👻 [nm] 5
Si-dead [um] 0.05
CO2 (um) 0
thick [mm] 3
✓ with pile-up calculation
cps: 2000 🚖
recognition time: 0.5
energy threshold:
 ✓

The best way to determine the needed values for simulation is to compare simulation with an acquired spectrum at high count rates. Adjustment of the parameters will make the goal (first recognition time for sum-peak adjustment, then energy threshold for dirty spectrum components).

Modern pulse processors use more than one fast channel for pulse-pair recognition. Also the thresholds are not very sharp. Therefore all is a reality-near simulation.

Finally the spectrum will be displayed with a simulation, which is using the element contents of the 'Specimen Composer' form. Any change in concentrations, keV, tilt or Fwhm will affect the calculation.

In case of a changed data-base, also the condensed data file for fundamental parameter calculation machine of spectra composer is to change (MAData3.dat, a condensed object of the editable data-base; for better machine language access). You can manage this automatically with hitting the button [Restore: MAData3.dat]:

Tips:

If you like another size oft spectrum window, use this additionally (version 2.00 and higher, only licensed) function in pop-up menu:

You can display detector efficiency curve (version 2.00 and higher):

6. Spectra comparison

200

3

Two spectra formats are possible to import via pop-up menu or using the icon, EMSA-Code and EDAX *.spc spectra files (different extensions). After the loaded spectrum name is displayed right top, you will be able to load alternative spectra also by click there.

👪 MA-Tab	le (Spec	tra l	Displa	vy)_															I I I
🏨 🖂 💐		•	Comp	050	/	ĸ	20	‡ ke∨	0.0 🔹 0	FWHM: 1	30 🛟	eV (Mn-Ka	1)							
<>><	<u>~</u>	¥ €	<u>ا</u> ر ا							EDX :	Spect	ra Simulati	ion					200	3	🖌 K3321 20 kV.sp
4 000 [C	omp	oser o	5									1								1
B	emer	vts:C[4.722] 0 [47.	.72] M	g(7.49	4] Si[2	1.81] Cal6.1	103) Ti (0.000) P	e[9.355] Ba[2.	791]									■ comp 20/0.0a
	L							😹 Spe	cimen Con	1poser	X	M Detec	tion l	imits / ana	lysis dep	ths / exc	itation		X	ROOLT CO RECEPC
	L							5	eleme	nt wt%	^	elem.	м	L	K	м	L	K	4	Simulation
	L							1	C	4.722		6 (C)	-	-	0.23	-	-	0.26		realistic spectrum 🔽
	L							2	0	47.72		8 (O)	-	-	0.19	-	-	0.9		iv noise
3 000-	t		L			T		3	Mg	7.494		12 (Mg)	-	-	0.08	-	-	2.4		Detector
	L	ł	ł					4	Si	21.81		14 (Si)	-	96.3	0.07	-	0.02	5		Shelf
	L							5	Ca	6.103		20 (Ca)	-	1.9	0.08	-	0.4	6		🔽 Tail 🛛 💆
	L					L		6	Ti	0.000		22 (Ti)	-	-	-	-	0.6	6		Specimen Composer (+)
	L		L					7	Fe	9.355		26 (Fe)	-	1.0	0.15	-	0.7	5	. 1	Construction
	L		L					8	Ba	2.791	_	56 (Ba)	9.4	0.22	-	0.8	6	-	. 1	Lomposer on
2 000-	Г							9			-					_			. 1	600000 counts
	L					L		10			2	L							×	3 min 20 s
	L					L		LM	of elements	Ato	n%	EPMA	VEC)	MDL [%] 20 s	an	alysis dept	th [um] 🛛		[with 2000 cps] 🔶
	L					L		X Cle	ar ∑ Nom	n 🖌 Calc	MDL	🔽 best M	MDL	(with 200	0 cps)		(6) microanaly	stinet	Acquire
	L																			Stop
1 000-	L																			
			L			L														Di ani dan B
	ļ						T.													
						li	1													
		1		Notes	-				1.											
	11	7			a a a		٧V	Man												
0		-,	_					-1			tiber (tint the side	-	<u>hereizen</u>						-
•		1	2		3	4		5 (ŝ 7	8 9		10 11 KeV	12	13	14 1	5 16	17	18 1	9	20 [c] microanalyst.net

The original spectra acquisition time is used for simulation and the acquired spectrum is fit at one energy region, default with 3 keV, but possible to change:

First window: acquisition time in seconds | second window: fit energy

Please be careful with detection limits calculation. Check the count rate, because this is not imported together with the spectrum.

Also the acquisition time is now possible to change (only after spectra imports). Therefore you can calculate detection limits and other parameters just for the original acquired spectrum. Change the acquisition time, the fit energy or both, then hit the hook button and the changed values will be active for simulation and fit with acquired spectrum.

With this icon the simulated spectrum is possible to switch off/on for comparison purpose options with the real measured spectrum.

The additional tool bar is self explaining and very useful for usual spectra display manipulations to assess the simulation in comparison to the acquired spectrum (explained already):

Attention! The simulation below the energy of 1 keV is very critical and depends from the performance of the detector. There could be a lot of influences, e.g. detector icing, contamination and different behaviour in incomplete charge collection. Also not homogenous specimen or contaminations (coatings) have visible influences. Last but not least, the atomic data and ability of proper calculation of specimen excitation and self absorption is charged with more errors than usual with higher energies.

7. References

The data are blend of common used tables, new papers and 20 years personal EDX-experience:

J. A. Bearden, "X-Ray Wavelengths," Rev. Mod. Phys. 39, 78 (1967)

McMaster Tables, Lawrence Livermore National Laboratory Report (1969)

M. O. Krause, J. Phys. Chem. Ref. Data. 8, 307(1979)

G.Zschornack, "Atomdaten für die Röntgenspektralanalyse", Verlag f.Grundstoffind.- Leipzig (1989) M.Wendt, Microchimica Acta 139 (2002) 195-200

A.Aßmann, M.Wendt, Spectrochimica Acta, Part B 58 (2003) 711-716

The data base is open to improve (if necessary) and enlarge with new experience and more recent results.

The spectra simulation basics were described and published:

F.Eggert, Microchim Acta 155 (2006) 129

8. Finally Some Hints

• Often one would like to manipulate the spectrum representation to make details visible. This is also always possible in MA-Table, additionally to icons use:

Zoom:

In order to select a part of the spectrum display in detail (cut out), the left upper corner of the interested area is to select with mouse. Hit the <u>left mouse button</u>. Now move the mouse to the right lower corner of the wished area (do not release left mouse button during move!). Now the mouse button is only to release; and the spectrum representation is going to change automatically to the wished selected part.

Zoom cancelling:

Proceed as above with the zoom shot, only from right down to the left up. The selected cut is here no matter, since the spectrum representation returns in each case again to the start situation. The other way is to use right mouse pop-up menu (function "reset") or 'house' icon.

Scroll of the spectrum representation:

Press the <u>right mouse button</u> mouse outside the red spectrum, but within the spectrum window and move the mouse with keeping right mouse button pressed, move to left or right.

• You want to work in other programs directly with the Windows[®]-clipboard (to copy, to paste). Or you want to use functionalities, which use the clipboard indirectly and the MA-Table is opened...

... and some of these functions do not work:

That is correct. The free version of MA-Table comes with restrictions. One restriction is the represented data and computed spectra cannot be copied. In order to use the clipboard in other programs, the complete MA-Table program does not have to be terminated. It is sufficient, if the opened MA-Table windows are closed and the program is transferred into the initial state (start situation: Table or Icon bar).

• MA-Table produces automatic pop-ups (on top), in free version only. If you are working with other programs (MA Table is not in the foreground), then these advertisement windows can disturbing you frequently:

One does not need to terminate the MA-Table program, in order to avoid the pop-ups. It is sufficient to reduce the program for Icon bar and to close all opened MA-Table windows, if you do not work actively straight with it. Thus the MA-Table features are permanent 'standby' and the advertisement pop-ups constantly disturb nevertheless not when operating other software.

9. Version 2.xx Start

MA-Table counts down 20 seconds with each start, if the version is not full licensed:

After the count down is finished, 3 options will be possible to select:

-	Start	License	Input key
-	N		
-	NOTIC	ensed trial	version

Usually use [Start] to start the program. If you like to know how to get full licensed, select [License] (Internet connection required to get the information).

If you have already a full license key:

Select [Input key] and you will be directed immediately to the form where the license-key input is possible. The license key input is required only once (e.g. after installation using another computer), then the 20-seconds counting will be not with each next program start.

© 2015 http://www.microanalyst.net